Sélectionnez un terme à l'un des polynômes , de préférence dans le polynôme contenant moins de termes .
Par exemple , avec les polynômes ( 3x ^ 2 + 2a ^ 2 ) et ( 2x ^ 3 - xy ^ 2 + 3 ) , nous choisirons le premier terme , 3x ^ 2
2
Appliquer la propriété distributive en multipliant chaque terme de l'autre polynôme par ce terme choisi . .
cela donne un ensemble de produits dans notre exemple consistant en 6x ^ 5 - . 3x ^ 3y ^ 2 + 9x ^ 2
3
Répétez ce processus pour chaque . terme dans le plus petit polynôme
application de la propriété distributive pour le second terme prête 4x ^ 3y ^ 2 - 2xy ^ 4 + 6y ^ 2 )
4
Ajouter ou soustraire des ensembles des produits de l'autre que les signes de vos impératifs polynômes choisis , combinant des termes semblables , si possible.
Dans nos deux ensembles de produits , deux des termes ont la base commune de x ^ 3y ^ 2 , de sorte que ces sont combinés dans la somme finale : Photos
6x ^ 5 - 2xy ^ 4 + ( 4x ^ 3y ^ 2 - 3x ^ 3y ^ 2 ) + 9x ^ 2 + 6y ^ 2 Photos
Cela simplifie à : Photos
6x ^ 5 - 2xy ^ 4 + x ^ 3y ^ 2 + 9x ^ 2 + 6y ^ 2